Advanced Linear Algebra (MA 409) Problem Sheet - 23

Gram-Schmidt Orthogonalization Process and Orthogonal Complements

- 1. Label the following statements as true or false.
 - (a) The Gram Schmidt orthogonalization process allows us to construct an orthonormal set from an arbitrary set of vectors.
 - (b) Every nonzero finite-dimensional inner product space has an orthonormal basis.
 - (c) The orthogonal complement of any set is a subspace.
 - (d) If $\{v_1, v_2, ..., v_n\}$ is a basis for an inner product space *V*, then for any $x \in V$ the scalars (x, v_i) are the Fourier coefficients of *x*.
 - (e) An orthonormal basis must be an ordered basis.
 - (f) Every orthogonal set is linearly independent.
 - (g) Every orthonormal set is linearly independent.
- 2. In each part, apply the Gram Schmidt process to the given subset *S* of the inner product space *V* to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S), and compute the Fourier coefficients of the given vector relative to β .
 - (a) $V = \mathbb{R}^3$, $S = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$, and x = (1, 0, 1)
 - (b) $V = P_2(R)$ with the inner product $\langle f(x), g(x) \rangle = \int_0^1 f(t)g(t)dt$, $S = \{1, x, x^2\}$, and h(x) = 1 + x.
 - (c) V = span(S), where $S = \{(1, i, 0), (1 i, 2, 4i)\}$, and x = (3 + i, 4i, -4)
 - (d) $V = \mathbb{R}^4$, $S = \{(1, -2, -1, 3), (3, 6, 3, -1), (1, 4, 2, 8)\}$, and x = (-1, 2, 1, 1)
 - (e) $V = M_{2 \times 2}(\mathbb{R}), S = \left\{ \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 11 & 4 \\ 2 & 5 \end{pmatrix}, \begin{pmatrix} 4 & -12 \\ 3 & -16 \end{pmatrix} \right\}, \text{ and } A = \begin{pmatrix} 8 & 6 \\ 25 & -13 \end{pmatrix}$
 - (f) V = span(S) with the inner product $\langle f, g \rangle = \int_0^{\pi} f(t)g(t)dt$, $S = \{\sin t, \cos t, 1, t\}$, and h(t) = 2t + 1
 - (g) $V = \mathbb{C}^4$, $S = \{(-4, 3 2i, i, 1 4i), (-1 5i, 5 4i, -3 + 5i, 7 2i), (-27 i, -7 6i, -15 + 25i, -7 6i)\}$, and x = (-13 7i, -12 + 3i, -39 11i, -26 + 5i)

(h)
$$V = M_{2 \times 2}(\mathbb{C}), S = \left\{ \begin{pmatrix} -1+i & -i \\ 2-i & 1+3i \end{pmatrix}, \begin{pmatrix} -1-7i & -9-8i \\ 1+10i & -6-2i \end{pmatrix}, \begin{pmatrix} -11-132i & -34-31i \\ 7-126i & -71-5i \end{pmatrix} \right\},$$

and $A = \begin{pmatrix} -7+5i & 3+18i \\ 9-6i & -3+7i \end{pmatrix}$

3. In \mathbb{R}^2 , let

$$\beta = \left\{ \left(\begin{array}{cc} \frac{1}{\sqrt{2}}, & \frac{1}{\sqrt{2}} \end{array} \right), \left(\begin{array}{cc} \frac{1}{\sqrt{2}}, & \frac{-1}{\sqrt{2}} \end{array} \right) \right\}.$$

Find the Fourier coefficients of (3,4) relative to β .

- 4. Let $S = \{(1, 0, i), (1, 2, 1)\}$ in \mathbb{C}^3 . Compute S^{\perp} .
- 5. Let $S_0 = \{x_0\}$, where x_0 is a nonzero vector in \mathbb{R}^3 . Describe S_0^{\perp} geometrically. Now suppose that $S = \{x_1, x_2\}$ is a linearly independent subset of \mathbb{R}^3 . Describe S^{\perp} geometrically.
- 6. Let *V* be an inner product space, and let *W* be a finite-dimensional subspace of *V*. If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^{\perp}$, but $\langle x, y \rangle \neq 0$.
- 7. Let β be a basis for a subspace W of an inner product space V, and let $z \in V$. Prove that $z \in W^{\perp}$ if and only if $\langle z, v \rangle = 0$ for every $v \in \beta$.
- 8. Prove that if {w₁, w₂,..., w_n} is an orthogonal set of nonzero vectors, then the vectors v₁, v₂,..., v_n derived from the Gram Schmidt process satisfy v_i = w_i for i = 1, 2, ..., n.
 Hint : Use mathematical induction.
- 9. Let $W = span(\{(i, 0, 1)\})$ in \mathbb{C}^3 . Find orthonormal bases for W and W^{\perp} .
- 10. Let *W* be a finite-dimensional subspace of an inner product space *V*. Prove that there exists a projection *T* on *W* along W^{\perp} that satisfies $N(T) = W^{\perp}$. In addition, prove that $||T(x)|| \le ||x||$ for all $x \in V$.
- 11. Let *A* be an $n \times n$ matrix with complex entries. Prove that $AA^* = I$ if and only if the rows of *A* form an orthonormal basis for C^n .
- 12. Prove that for any matrix $A \in M_{m \times n}(F)$, $(R(L_{A^*}))^{\perp} = N(L_A)$.
- 13. Let *V* be an inner product space, *S* and S_0 be subsets of *V*, and *W* be a finite-dimensional subspace of *V*. Prove the following results.
 - (a) $S_0 \subseteq S$ implies that $S^{\perp} \subseteq S_0^{\perp}$.
 - (b) $S \subseteq (S^{\perp})^{\perp}$; so $span(S) \subseteq (S^{\perp})^{\perp}$.
 - (c) $W = (W^{\perp})^{\perp}$.
 - (d) $V = W \oplus W^{\perp}$.
- 14. Let W_1 and W_2 be subspaces of a finite-dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$.
- 15. Let *V* be a finite-dimensional inner product space over *F*.
 - (a) *Parseval's Identity*. Let $\{v_1, v_2, ..., v_n\}$ be an orthonormal basis for *V*. For any $x, y \in V$ prove that

$$\langle x, y \rangle = \sum_{i=1}^n \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

(b) Use (a) to prove that if β is an orthonormal basis for V with inner product ⟨·, ·⟩, then for any x, y ∈ V

$$\langle \phi_{\beta}(x), \phi_{\beta}(y) \rangle' = \langle |x|_{\beta}, |y|_{\beta} \rangle' = \langle x, y \rangle,$$

where $\langle \cdot, \cdot \rangle'$ is the standard inner product on F^n .

16. (a) *Bessel's Inequality*. Let *V* be an inner product space, and let $S = \{v_1, v_2, ..., v_n\}$ be an orthonormal subset of *V*. Prove that for any $x \in V$ we have

$$||x||^2 \geq \sum_{i=1}^n |\langle x, v_i \rangle|^2,$$

- (b) In the context of (a), prove that Bessel's inequality is an equality if and only if $x \in span(S)$.
- 17. Let *T* be a linear operator on an inner product space *V*. If $\langle T(x), y \rangle = 0$ for all $x, y \in V$, prove that $T = T_0$. In fact, prove this result if the equality holds for all *x* and *y* in some basis for *V*.
- 18. Let V = C([-1,1]). Suppose that W_e and W_o denote the subspaces of V consisting of the even and odd functions, respectively. Prove that $W_e^{\perp} = W_o$, where the inner product on V is defined by

$$\langle f,g\rangle = \int_{-1}^{1} f(t)g(t)dt$$

- 19. In each of the following parts, find the orthogonal projection of the given vector on the given subspace *W* of the inner product space *V*.
 - (a) $V = \mathbb{R}^2$, u = (2, 6), and $W = \{(x, y) : y = 4x\}$.
 - (b) $V = \mathbb{R}^3$, u = (2, 1, 3), and $W = \{(x, y, z) : x + 3y 2z = 0\}$.
 - (c) $V = P(\mathbb{R})$ with the inner product $\langle f(x), g(x) \rangle = \int_0^1 f(t)g(t)dt$, $h(x) = 4 + 3x 2x^2$, and $W = P_1(\mathbb{R})$.
- 20. In each part of the above Exercise, find the distance from the given vector to the subspace *W*.
- 21. Let V = C([-1,1]) with the inner product $\langle f,g \rangle = \int_{-1}^{1} f(t)g(t)dt$, and let W be the subspace $P_2(\mathbb{R})$, viewed as a space of functions. Use the orthonormal basis $\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{5}{8}}(3x^2-1)\}$ to compute the "best" (closest) second-degree polynomial approximation of the function $h(t) = e^t$ on the interval [-1,1].
- 22. Let V = C([0,1]) with the inner product $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$. Let *W* be the subspace spanned by the linearly independent set $\{t, \sqrt{t}\}$.
 - (a) Find an orthonormal basis for W.
 - (b) Let $h(t) = t^2$. Use the orthonormal basis obtained in (a) to obtain the "best" (closest) approximation of *h* in *W*.
- 23. Let *V* be the vector space of all sequences σ in *F* (where $F = \mathbb{R}$ or $F = \mathbb{C}$) such that $\sigma(n) \neq 0$ for only finitely many positive integers *n*. For $\sigma, \mu \in V$, we define $\langle \sigma, \mu \rangle = \sum_{n=1}^{\infty} \sigma(n) \overline{\mu(n)}$. Since all but a finite number of terms of the series are zero, the series converges.
 - (a) Prove that $\langle \cdot, \cdot \rangle$ is an inner product on *V*, and hence *V* is an inner product space.
 - (b) For each positive integer *n*, let e_n be the sequence defined by $e_n(k) = \delta_{n,k}$, where $\delta_{n,k}$ is the Kronecker delta. Prove that $\{e_1, e_2, \ldots\}$ is an orthonormal basis for *V*.
 - (c) Let $\sigma_n = e_1 + e_n$ and $W = span(\{\sigma_n : n \ge 2\})$.
 - (i) Prove that $e_1 \notin W$, so $W \neq V$.
 - (ii) Prove that $W^{\perp} = \{0\}$, and conclude that $W \neq (W^{\perp})^{\perp}$.